Strategien und Hilfsmittel zur Vermeidung typischer Pflanzenkrankheiten

AGA-JAHRESTAGUNG 2019 – Bad Leonfelden

Dipl.-Ing. agr. Marcus Neemann – m.neemann@sglsystem.com – 0049 (0)171 1046612

WE HELP YOU WIN THE GAME

Ursachen von Pflanzenstress

Bodenleben, Spritzmitteleinsatz

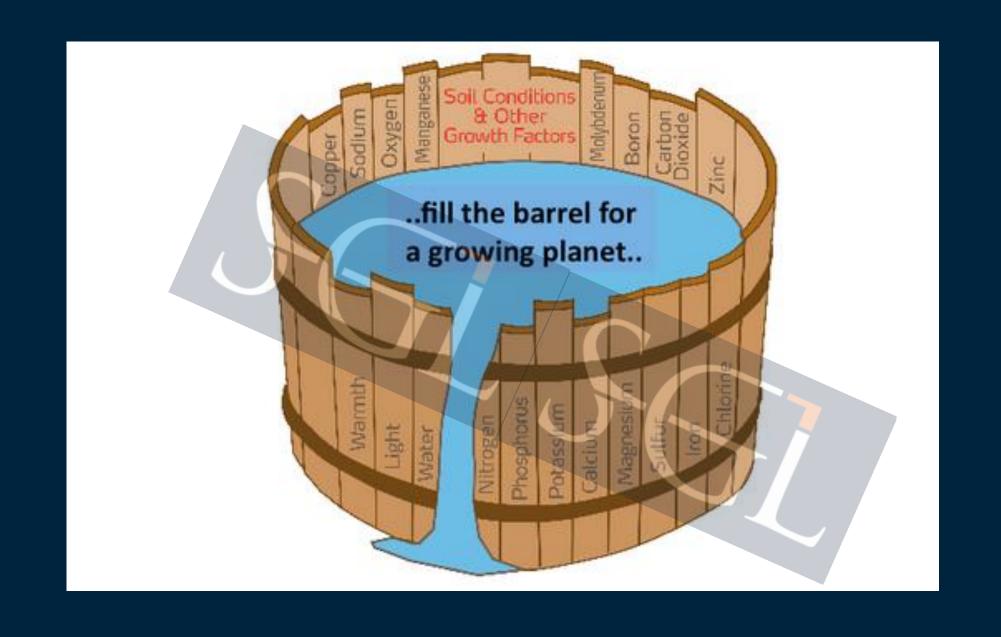
Nutzungsgrad, Auslastung Gräserbestand, Gegebenheiten

Bauweise, Bodenphysik

Pflegemanagement, Maschinenpark

Beregnungswasser, Mengen, Chemie Nährstoffformen, Aufwandmengen

Witterungsverlauf, geographische Lage



Verhinderungsmöglichkeiten von PFLANZENSTRESS

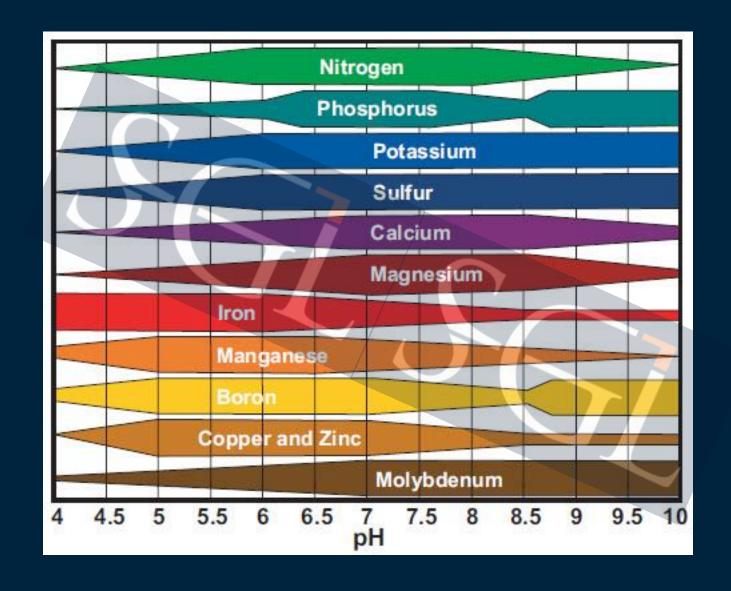
- Bedarfsgerechte Gräserernährung
- Bedarfsgerechte Bewässerung
- Bedarfsgerechte physikalische Bodenbearbeitung
- Einsatz natürlicher Helfer (Mikroorganismen/Biodiversität)
- Einsatz natürlicher Pflanzenstärkungsmittel Aktivierung der natürlichen Abwehrkräfte der Gräser
- Das aktuelle Wissen um den IST-ZUSTAND aller relevanten Wachstumsfakoren

Verhinderungsmöglichkeiten von PFLANZENSTRESS

- Bedarfsgerechte Gräserernährung
- Bedarfsgerechte Bewässerung
- Bedarfsgerechte physikalische Bodenbearbeitung
- Einsatz natürlicher Helfer (Mikroorganismen/Biodiversität)
- Einsatz natürlicher Pflanzenstärkungsmittel
 Aktivierung der natürlichen Abwehrkräfte der Gräser
- Das aktuelle Wissen um den IST-ZUSTAND aller relevanten Wachstumsfakoren

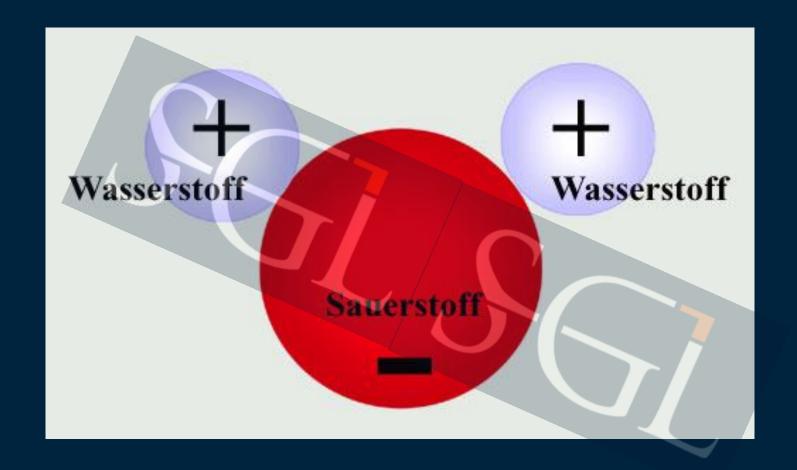
Soil Chemistry Report

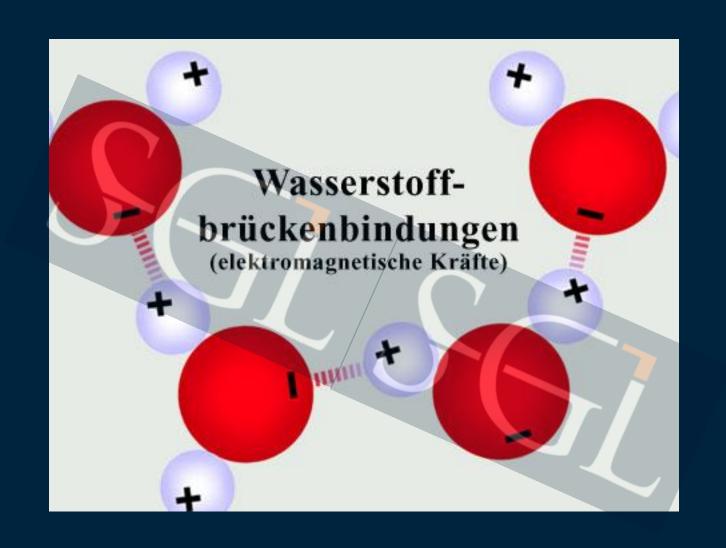
	Analysis	Units	Result	Guideline	Low	Optimal	High
	рН		7.14	6 -7			•
Routine	EC	mS/cm	0.15	0.05 - 0.5		_	1
	Soil OM	%	2.91	1-5			I I
•	Calcium	mg/kg	2066	1000 - 2000			-
Plant Soluble	Magnesium	mg/kg	89.1	140 - 285			1
골등	Phosphat	mg/kg	46.5	10 - 23			-
7	Kalium	mg/kg	123	100 - 150			
	Phosphat	mg/kg	99.2	70 - 230		-	i
<u>o</u>	Schwefel	mg/kg	92.6	10 - 30		1	
Extractable	Bor	mg/kg	0.24	1.0 - 2.0			
act	Mangan	mg/kg	35.4	8.0 - 25			•
븇	Kupfer	mg/kg	0.47	0.8 - 3.0			i i
Д.	Zink	mg/kg	0.99	2.0 - 8.0			
	Eisen	mg/kg	187	50 - 100			
		ne/100g	15.0	l /			İ
		ne/100g	15.0				<u>;</u>
ase	Calcium	%	90.0	60 - 70			
Albrecht Base Saturation	Magnesium	%	5.02	10 - 20			!
	Kalium	%	2.64	3.0 - 5.0			
	Natrium	%	1.98	2.0</td <td></td> <td></td> <td></td>			
	Aluminium	%	0.38	≮ 3.0			
	Wasserstoff	%	0.00	/ 10			
	Ca/Mg Ratio		17.9	6-7			

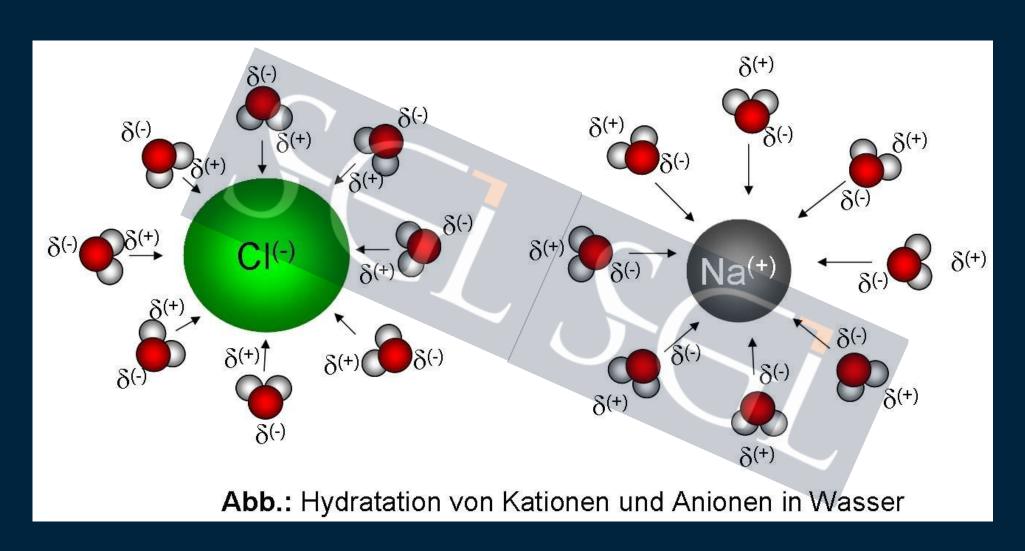

	Analysis	Units	Result	Upper Limit	Good	Marginal	Toxic
	Zink	mg/kg	15.0	<450			
_	Nickel	mg/kg	22.5	<100			
щ. v	Kupfer	mg/kg	12.3	<110			
Total Elements (PTE's)	Kadmium	mg/kg	1.07	< 3.0			
ts	Blei	mg/kg	2.43	<300	1		
Ē	Quecksilber	mg/kg	0.09	<1			
e u	Chrom	mg/kg	7.76	<400			
=	Molybdän	mg/kg	2.58	0.5 - 2.0			
ota	Selen	mg/kg	0.99	0.6 - 2.0		<u> </u>	
F	Arsen	mg/kg	3.05	<50			
	Kobalt	mg/kg	2.37	2.0 - 40		į	

Antagonistische Wechselbeziehungen

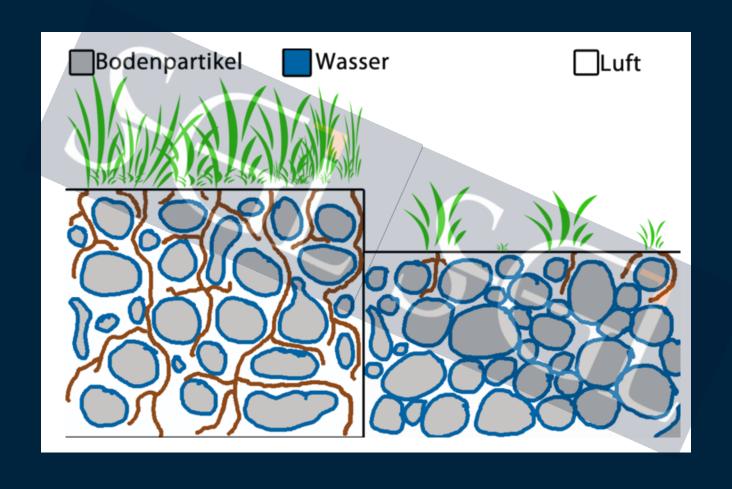
Überschuss von blockiert eventuell	Phosphor	Kalium	Calcium	Magnesium	Zink	Mangan	Kupfer	Eisen	Natrium	Bor
Р										
К										
Ca						<u> </u>				
Mg	9			>						
Zn										
Mn				9	9					1
Cu						H			- /	
Fe								J		
Na										
В										


Nährelement	Funktionen (Auswahl)
GRUPPE 1	Bestandteile organischer Verbindungen
Schwefel (S)	bestimmte Aminosäuren, Coenzym A, Thiaminpyrophosphat, Glutathion, Disulfidbrücken
Stickstoff (N)	Aminosäuren, Nucleotide, Coenzyme
GRUPPE 2	Energiestoffwechsel, strukturelle Integrität
Bor (B)	Komplexe mit Komponenten der Zellwand, Nucleinsäurestoffwechsel
Phosphor (P)	Phospholipide, Nucleinsäuren, Zuckerphosphate, Coenzyme, ATP, GTP usw.
Silicium (Si)	Bestandteil von Zellwänden, Festigkeit und Elastizität
GRUPPE 3	als Ionen vorkommend
Calcium (Ca)	Funktion als second messenger, Bestandteil der Mitellamelle, Cofaktor einiger Enzyme
Chlor (CI)	fotosynthetische Sauerstoffproduktion
Kalium (K)	Cofaktor vieler Enzyme, wichtigstes Kation für die Regulation des Turgors
Magnesium (Mg)	Bestandteil des Chlorophylls, am ATP-abhängigen Stoffwechsel beteiligt
Mangan (Mn)	an Fotolyse des Wassers im Fotosystem II beteiligt, Cofaktor bestimmter Enzyme (Dehydrogenasen, Kinasen, Oxidasen usw.)
Natrium (Na)	teilweise Funktion von Kalium
GRUPPE 4	Bestandteile von Elektronentransport- und -transfersystemen
Eisen (Fe)	Cytochrome, Nichthäm-Eisenproteine, bei Fotosynthese, Atmung, Stickstoff-Fixierung
Kupfer (Cu)	Plastocyanin, verschiedene Enzyme
Molybdän (Mb)	verschiedene Enzyme (Nitrogenase, Nitratreduktase)
Nickel (Ni)	verschiedene Enzyme, (Urease, Hydrogenasen bestimmter N $_{z}$ -fixierender Bakterien)
Zink (Zn)	verschiedene Enzyme (Alkoholdehydrogenase usw.)


Einfluss des pH-Wertes auf die Verfügbarkeit von Nährstoffen


Verhinderungsmöglichkeiten von PFLANZENSTRESS

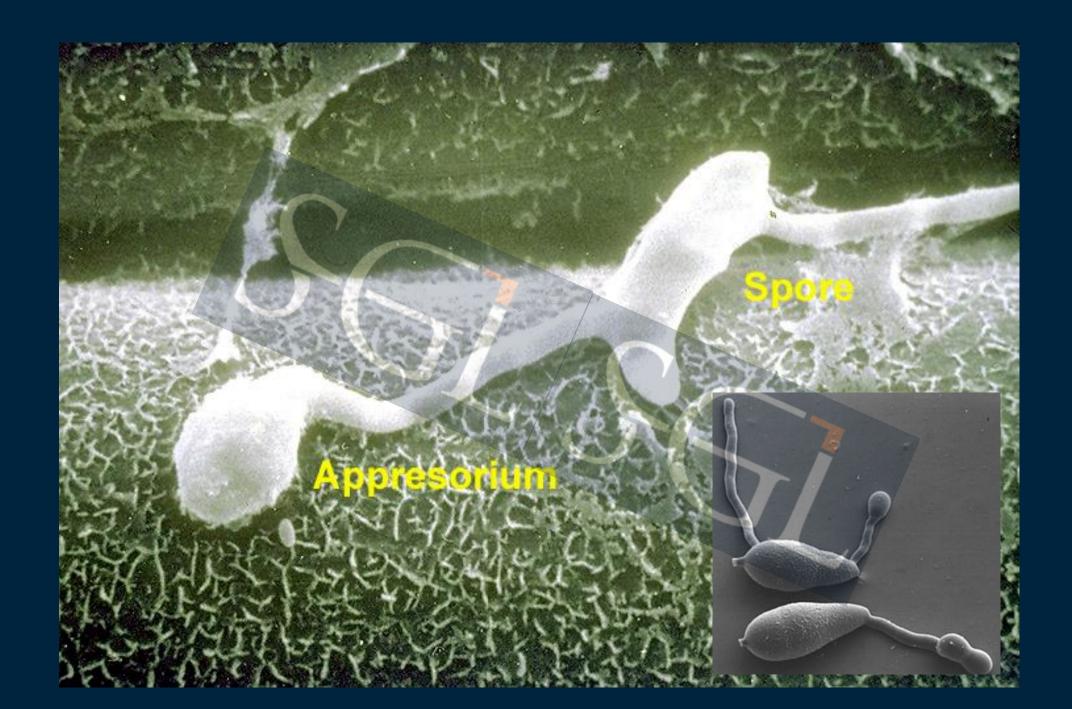
- Bedarfsgerechte Gräserernährung
- Bedarfsgerechte Bewässerung
- Bedarfsgerechte physikalische Bodenbearbeitung
- Einsatz natürlicher Helfer (Mikroorganismen/Biodiversität)
- Einsatz natürlicher Pflanzenstärkungsmittel Aktivierung der natürlichen Abwehrkräfte der Gräser
- Das aktuelle Wissen um den IST-ZUSTAND aller relevanten Wachstumsfakoren


Hydratation/ Hydration

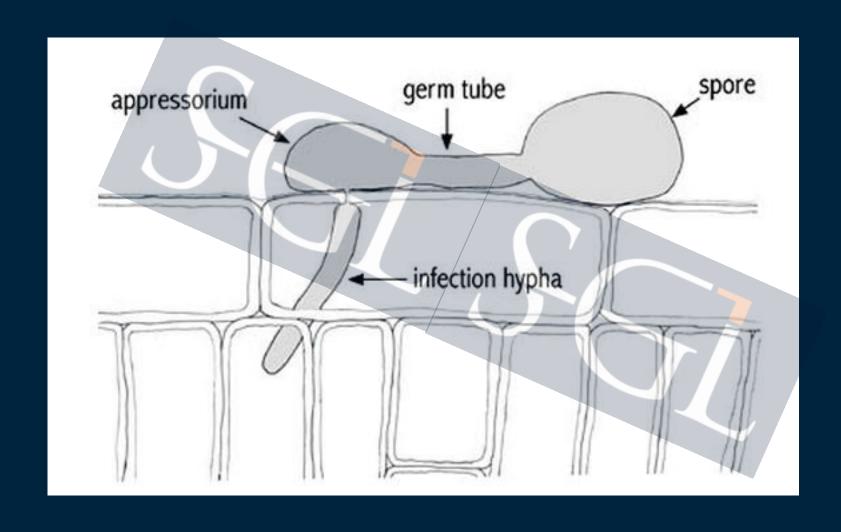
Verhinderungsmöglichkeiten von PFLANZENSTRESS

- Bedarfsgerechte Gräserernährung
- Bedarfsgerechte Bewässerung
- Bedarfsgerechte physikalische Bodenbearbeitung
- Einsatz natürlicher Helfer (Mikroorganismen/Biodiversität)
- Einsatz natürlicher Pflanzenstärkungsmittel Aktivierung der natürlichen Abwehrkräfte der Gräser
- Das aktuelle Wissen um den IST-ZUSTAND aller relevanten Wachstumsfakoren

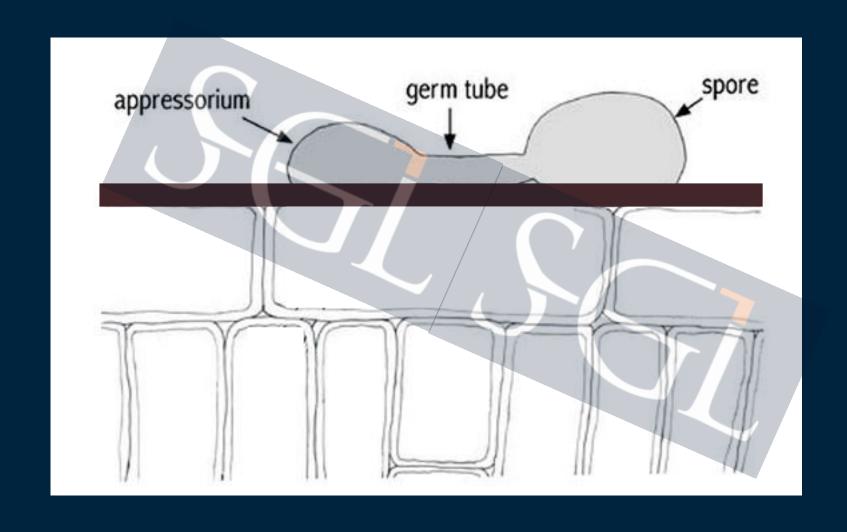
Auswirkung von Bodenverdichtung



Porengröße und Wasserverfügbarkeit

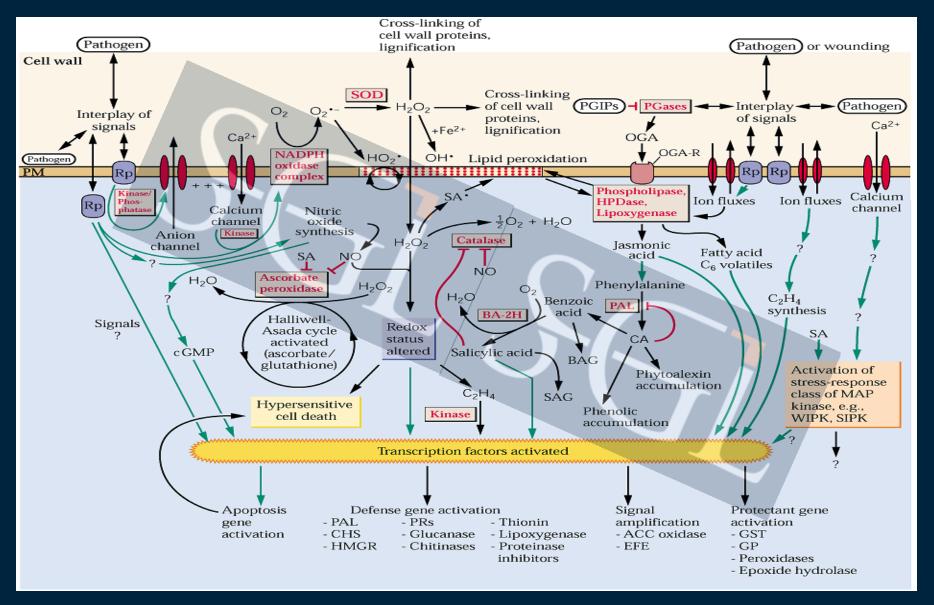

Tab. 20. Porengröße und Wasserverfügbarkeit (nach Scheffer und Schachtschaßel modifiziert)								
Porengröße	Porendurchmesser (µm)	pF	Verfügbarkeit des Wassers					
Grobporen weit	> 50	0-1,8	rasch dränend, leicht pflanzen- verfügbar					
Grobporen eng	50-10	1,8-2,5	langsam drä- nend, pflanzen- verfügbar					
Mittelporen	10-0,2	2,5-4,2	nicht dränend, schwer bzw.					
Feinporen	< 0,2	> 4,2	nicht pflanzenverfüg- bar					

Verhinderungsmöglichkeiten von PFLANZENSTRESS


- Bedarfsgerechte Gräserernährung
- Bedarfsgerechte Bewässerung
- Bedarfsgerechte physikalische Bodenbearbeitung
- Einsatz natürlicher Helfer (Mikroorganismen/Biodiversität)
- Einsatz natürlicher Pflanzenstärkungsmittel Aktivierung der natürlichen Abwehrkräfte der Gräser
- Das aktuelle Wissen um den IST-ZUSTAND aller relevanten Wachstumsfakoren

Infektinsvorgang - schematisch

Infektinsvorgang - schematisch


Vorteile eines gesunden Bodenlebens

- verbesserte Vitalität
- gesteigerte Nährstoffaufnahme (Einzugsbereich)
- verbesserte Wasseraufnahme und Verfügbarkeit
- erhöhte Toleranz gegenüber bodenbürtigen Schaderregern
- erhöte Trockenstresstoleranz
- geringerer Düngeraufwand
- optimale Umsetzung organischer Dünger
- Aktivierung natürlicher Abwehrkräfte
- Reduktion von chemischem Pflanzenschutz
- Verbesserte Bodenstruktur uvm.

Verhinderungsmöglichkeiten von PFLANZENSTRESS

- Bedarfsgerechte Gräserernährung
- Bedarfsgerechte Bewässerung
- Bedarfsgerechte physikalische Bodenbearbeitung
- Einsatz natürlicher Helfer (Mikroorganismen/Biodiversität)
- Einsatz natürlicher Pflanzenstärkungsmittel Aktivierung der natürlichen Abwehrkräfte der Gräser
- Das aktuelle Wissen um den IST-ZUSTAND aller relevanten Wachstumsfakoren

Aktivierung natürlicher Abwehrreaktionen

Hypersensitive Abwehrreaktion

Der Schlüssel zur Vermeidung von PFLANZENSTRESS

Das aktuelle Wissen um den IST-ZUSTAND aller relevanten Wachstumsfakoren

Auf Grundlage von Zahlen, Daten u. Fakten effektiv agieren

Vermeidungsstrategien

- Bedarfsgerechte bereitstellung aller relevanten Wachstumsfaktoren
- Vermeidung anhaltender Oberflächenfeuchte, auch während der NACHT!
- Anti-Taumittel Strategie
- Wahl der geeigneten stresstoleranten Gräsersorten (standortabhängig)
- prophylaktischer Einsatz natürlicher Pflanzenstärkungsmittel (Mittelwahl!)
- effektiver Einsatz von UVC Technik in Kombination mit einer Infektionsvorhersage

Vermeidungsstrategien

- Bedarfsgerechte bereitstellung aller relevanten Wachstumsfaktoren
- Vermeidung anhaltender Oberflächenfeuchte, auch während der NACHT!
- Anti-Taumittel Strategie
- Wahl der geeigneten stresstoleranten Gräsersorten (standortabhängig)
- prophylaktischer Einsatz natürlicher Pflanzenstärkungsmitte (Mittelwahl!)
- effektiver Einsatz von UVC Technik in Kombination mit einer Infektionsvorhersage

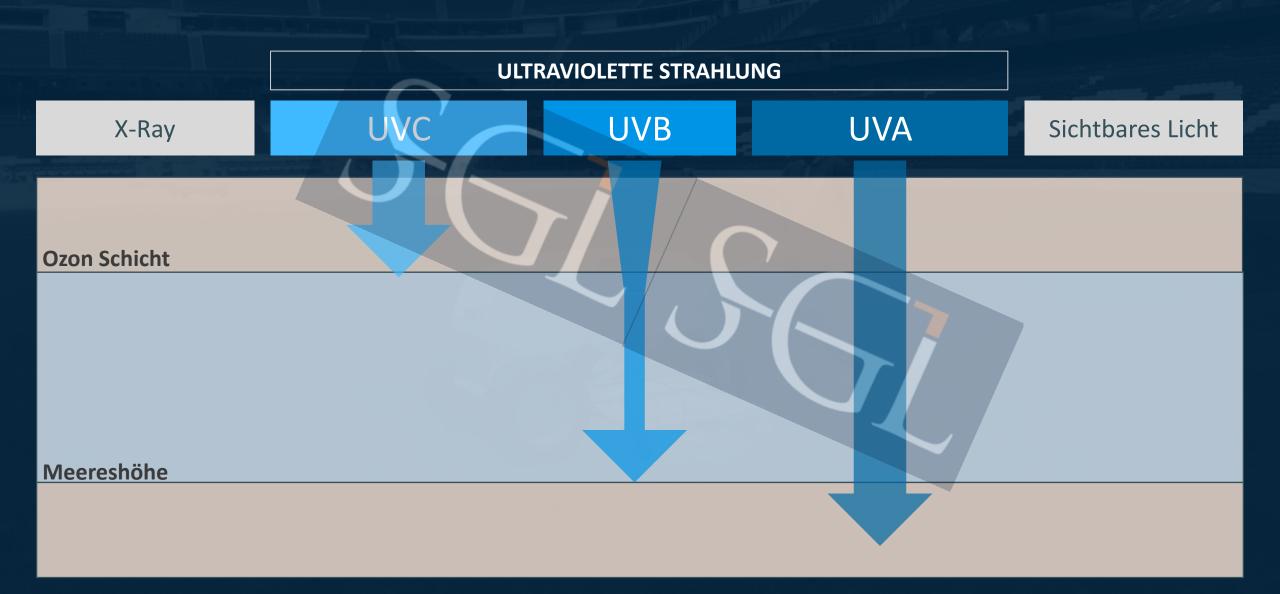
UVC180 – Biologische Bekämpfung von Rasenkrankheiten

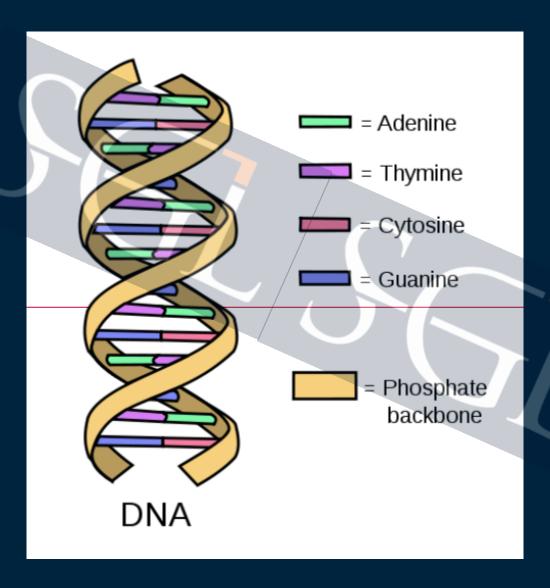
UVC180

Die UVC180 bietet die Möglichkeit einer biologischen Bekämpfung von typischen Schadpilzen auf Naturrasenflächen durch den Einsatz von UV-C Licht. Die kompakte handgeführte Maschine erlaubt eine einfache und strukturierte Behandlung jeglicher Art von Naturrasenspielfeldern.

Das UV-C Licht zerstört die DNA von aktiv wachsenden Schadpilzen und verhindert so die Reproduktion und Vermehrung des Schaderregers. Das Resultat ist ein Absterben des Schadpilzes, bevor es zu einer Infektion der Gräser kommt. Dies reduziert den Krankheitsdruck auf die Gräser und verringert die Gefahr des Ausbruches einer Pilzkrankheit im Bestand. Rasengräser sind im Vergleich zu pilzlichem Gewebe deutlich unempfindlicher gegenüber UV-C Strahlung. Aus diesem Grund reicht die von der UVC180 erzeugte Strahlungsstärke nur aus um die pilzlichen Zellen abzutöten. Den Gräsern selber kann die UV-C Strahlung in dieser Stärke keinen Schaden zufügen.

Vorteile


- Biologische und nachhaltige Schadpilzbekämpfung
- Wirksam gegen viele verschiedene Gattungen typischer Rasenpilze
- Kompakte u. leichtgewichtige Maschine
- Effektive Krankheitsvorhersage
- Kann ohne Lizenz betrieben werden.


UVC180
BIOLOGISCHE KRANKHEITSBEKÄMPFUNG

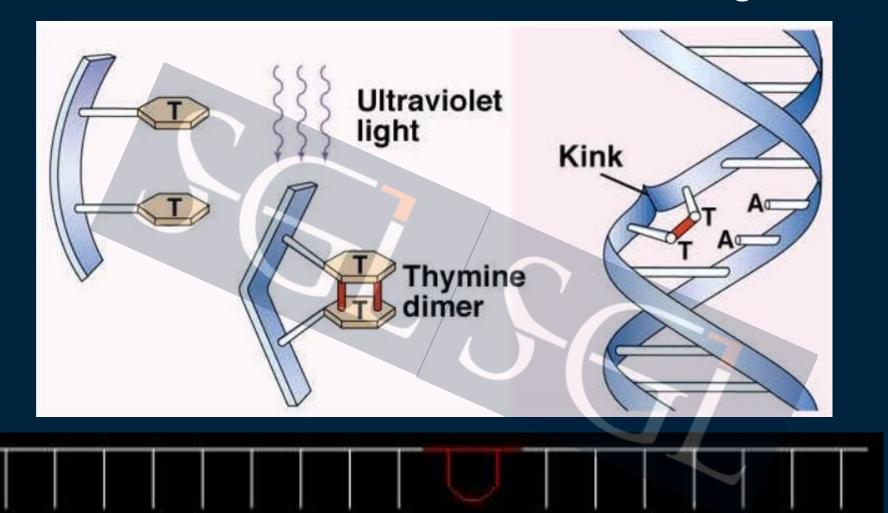
Aufbau der DNA

Die DNA ist ein langes
Kettenmolekül, das wie
eine gewundene Leiter
aussieht (Abbildung). Die
Sprossen dieser Leiter sind
aus unterschiedlichen
Bausteinen gefertigt (den
vier Basen Adenin, Thymin,
Guanin und Cytosin). Diese
Bausteine kodieren die
Erbinformation.

Eine bestimmte Sequenz von Basen bildet eine Erbinformation bzw. ein Gen.

Man spricht von einem Erbgutschaden, wenn die Abfolge der Basen oder deren Verkettung derart verändert oder beschädigt ist, dass die ursprüngliche Zellfunktion nicht mehr gewährleistet wird.

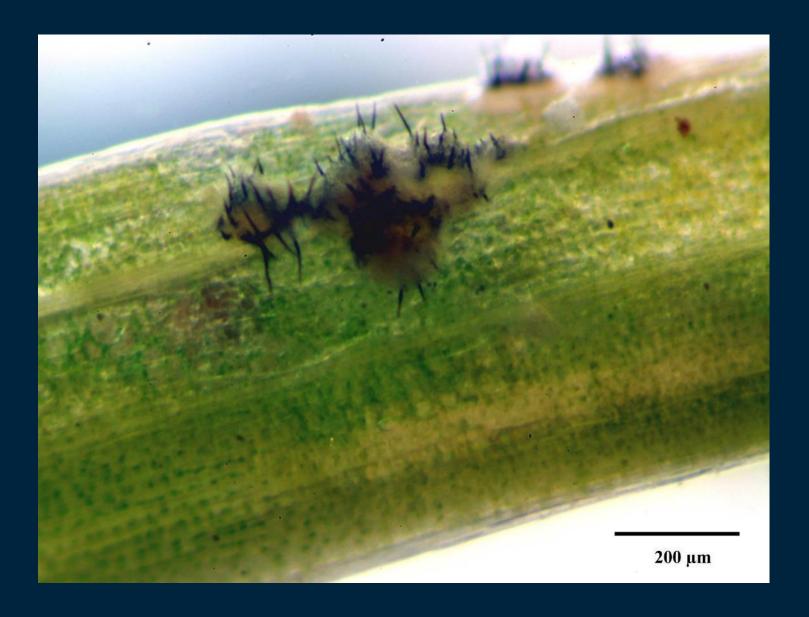
Mutation der Erbinformation durch UVC-Strahlung


UV-Strahlung führt zu Fotoschäden und zu Mutationen der DNA.

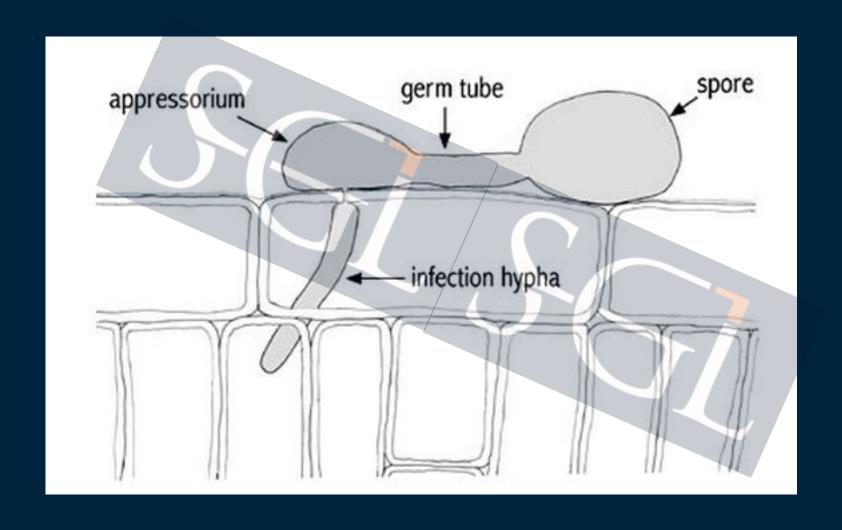
Der häufigste durch UV-Strahlung induzierte Fotoschaden beruht auf einer Verknüpfung benachbarter Thymin-Basen durch einen Zyklobutanring (CPD-Schaden).

Dabei verbinden sich zwei bestimmte benachbarte DNA-Bausteine, meist das Pyrimidin Thymin, zu einem Dimer und damit zu einer festen Einheit.

Als Folge kann die DNA nicht mehr richtig abgelesen werden, was zum Tod der Zelle führt.


DNA Mutation durch UVC-Strahlung

Symptombilder einer Pilzinfektion


Acervuli - Anthracnose


Sporenlager – Leptosphaerulina australis

Infektinsvorgang - schematisch

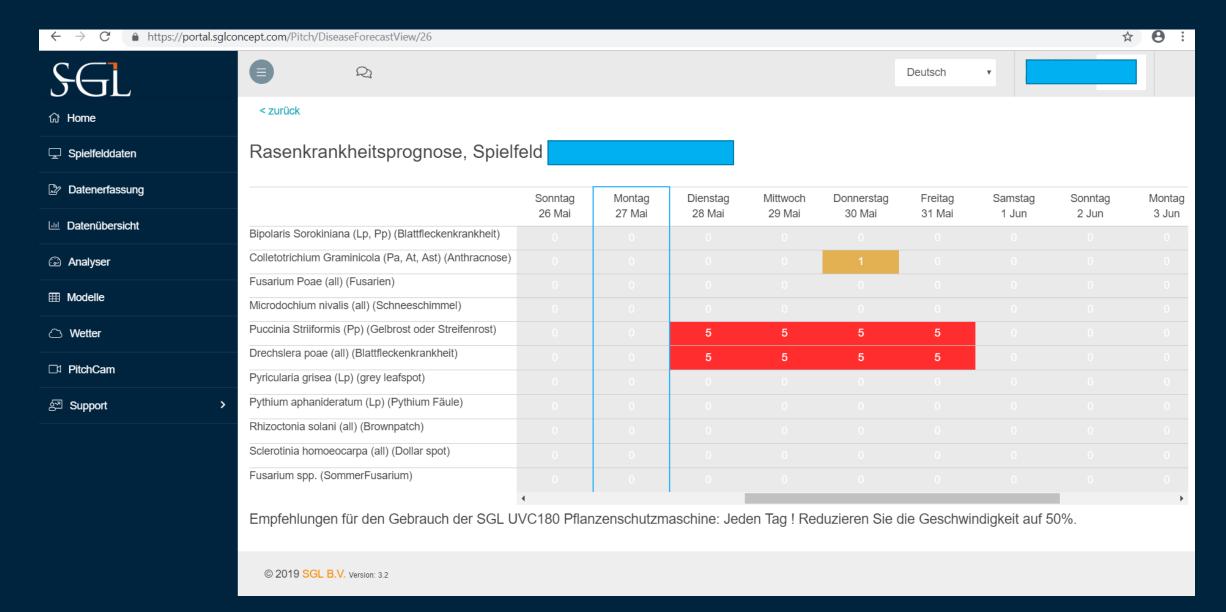
Infektiöse Pilzhyphe

UVC180: Vorteile für den Anwender

Wirkt gegen ALLE typischen Pilzkrankheiten in Rasengräsern

Keine Gefahr von Resistenzen wie beim chemischen Pflanzenschutz

Effektiver Einsatz durch die kombinierte Anwendung eines Krankheits-Vorhersagesystems – 24/7 online abrufbar


Im Bedarfsfall ist ein täglicher Einsatz unproblematisch, auch auf Neuansaaten

Sehr gute Wirkung gerade gegen Schneeschimmel und Fusariosen

Deutliche Einsparung bis hin zur Vermeidung von chemischem Pflanzenschutz

Sehr unkompliziert und einfach in der Anwendung

Rasenkrankheitsprognose – 24/7 online abrufbar

Batterie-Tausch



Einfluss von Eisensulfat (FeSO₄) auf Dollar Spot

Impact of iron sulfate vs. non-treated turf at the O.J. Noer Turfgrass Research and Education Facility in Madison, Wis., on July 18, 2018. **Photo by Paul Koch** (Aufwandmenge: 38,2L/ha alle 7 Tage)

S Thank you Vielen Dank